• Skip to navigation (Press Enter).
  • Skip to main content (Press Enter).
...
[X]
A – Z

Languages

  • Deutsch
  • English
University Library
Technical University Munich TUM logo
Menü
  • Home
  • Get in Contact
    • First Level Hotline
    • Consultations
    • Contact Persons
    • Opening Hours
    • Branch Libraries
    • Accessibility
    • News
  • Searching & Finding
    • OPAC
    • Databases
    • E-Journals
    • E-Books
    • Standards
    • Theses
    • mediaTUM
    • Recommend a Purchase
    • Shelfmarks & Classification
    • Apps & Tools
      • eAccess
      • Shibboleth
      • Link Resolver SFX
      • Further Apps & Tools
  • Borrowing & Ordering
    • Library Card
    • Library Account
    • Ordering & Reserving
    • Check-out & Borrowing
    • Renewing & Returning
    • Document Delivery & Interlibrary Loan
      • Interlibrary Loan
      • dokumenTUM
      • Digitisation on Demand
      • TIB Document Delivery
      • subito
  • Studying & Researching
    • Research Data
      • TUM DataTagger
      • TUM eLabFTW
    • LIT Days
    • Library Tours
    • Consultations
    • Courses & E-Learning
      • Calendar
      • Courses
      • E-Tutorials
    • Textbook Collections
    • Course Reserves
    • Study Areas & Facilities
      • Occupancy Indicator
      • Study Desks
      • Group Rooms
      • Study Carrels
      • Webinar Carrels
      • Presentation Lab
      • Computers & Internet
      • Lockers
      • Scanning
  • Publishing & Citing
    • TUMFIS
    • Open Access
      • Open Access Strategy
      • Agreements with Publishers
      • Publication Fund
      • Self-Archiving
      • Predatory Journals & Conferences
    • TUM.University Press
      • Publishing Portfolio
      • Book Publishing
      • Doctoral Thesis Publishing
      • Journal Publishing
    • Publishing
      • B.A. & M.A. Theses
      • Doctoral Theses
      • Habilitation Theses
    • University Bibliography
    • Reference Management
      • Citavi
      • EndNote
      • Zotero
    • Citing
    • Bibliometrics
  • About the Library
    • Organisation
      • Organigram
      • Library Staff
    • Library Profile
      • Mission Statement
      • Aufgaben
      • Quality Management
      • Cooperations & Memberships
    • Regulations & Fees
      • Library Regulations
      • House Rules
      • Acquisition Principles
      • Awarded Contracts
      • Prices & Fees
    • Staff Training
      • Library Vocational Training
    • Library Events
    • Careers
      • What we offer
      • Staff Vacancies
  • Home
  • Get in Contact
  • Searching & Finding
  • Borrowing & Ordering
  • Studying & Researching
  • Publishing & Citing
  • About the Library

University Library

First Level Hotline
Phone +49 89 189 659 220
information@ub.tum.de

Contact

TUM.University Press
tumuniversitypress@tum.de
Team
chat loading...
eAccess
OPAC
Courses
Opening Hours
Branch Libraries
Study Desk Reservation
Ask us

News

17. Sep 2025
LIT Days – Literature, Information, Training
08. Sep 2025
Library Tours – Get to know the Library in 30 Minutes
16. Jun 2025
TUMFIS Essentials – Visibility for Research Performance at TUM
View all
Subscribe to RSS

Back to Publishing Portfolio

TUM.University Press Cover Nudelis
Natan Nudelis

Machine Learning for Additive Manufacturing and Hot Isostatic Pressing based on Quality Characteristics

Editor: Peter Mayr, Lehrstuhl für Werkstofftechnik der Additiven Fertigung
Details
Editorial Program: TUM.UP-THESES
Reihe: TUM Series on Materials Engineering (MAT)
Subject: Maschinenwesen
Language: Englisch
ISSN (print): 3052-1173
ISSN (electronic): 3052-1181
ISBN: 9783958840980
DOI: 10.14459/2025md1733595
Publication date: September 2025
1. Auflage
Description: 121 pages
Format: DIN A5
Price (print): 29,00 €
Volltext
Order print copy: Hugendubel, Lehmanns
About this book

Additive manufacturing (AM) using laser powder bed fusion (PBF-LB/M) has many advantages such as design freedom and sustainability. However, AM also suffers from internal defects that limit its functionality. Furthermore, post-treatment methods like hot isostatic pressing (HIP) promise to enhance material properties. This work aims to develop a machine learning model using artificial neural networks, to predict PBF-LB/M or HIP process parameters based on quality characteristics.

  • Contact
  • Picture Credits
  • Accessibility
  • Data Privacy
  • Legal Notice